Targeted Inhibition of miRNA Maturation with Morpholinos Reveals a Role for miR-375 in Pancreatic Islet Development
نویسندگان
چکیده
Several vertebrate microRNAs (miRNAs) have been implicated in cellular processes such as muscle differentiation, synapse function, and insulin secretion. In addition, analysis of Dicer null mutants has shown that miRNAs play a role in tissue morphogenesis. Nonetheless, only a few loss-of-function phenotypes for individual miRNAs have been described to date. Here, we introduce a quick and versatile method to interfere with miRNA function during zebrafish embryonic development. Morpholino oligonucleotides targeting the mature miRNA or the miRNA precursor specifically and temporally knock down miRNAs. Morpholinos can block processing of the primary miRNA (pri-miRNA) or the pre-miRNA, and they can inhibit the activity of the mature miRNA. We used this strategy to knock down 13 miRNAs conserved between zebrafish and mammals. For most miRNAs, this does not result in visible defects, but knockdown of miR-375 causes defects in the morphology of the pancreatic islet. Although the islet is still intact at 24 hours postfertilization, in later stages the islet cells become scattered. This phenotype can be recapitulated by independent control morpholinos targeting other sequences in the miR-375 precursor, excluding off-target effects as cause of the phenotype. The aberrant formation of the endocrine pancreas, caused by miR-375 knockdown, is one of the first loss-of-function phenotypes for an individual miRNA in vertebrate development. The miRNA knockdown strategy presented here will be widely used to unravel miRNA function in zebrafish.
منابع مشابه
Maternal protein restriction leads to pancreatic failure in offspring: role of misexpressed microRNA-375.
The intrauterine environment of the fetus is a preeminent actor in long-term health. Indeed, mounting evidence shows that maternal malnutrition increases the risk of type 2 diabetes (T2D) in progeny. Although the consequences of a disturbed prenatal environment on the development of the pancreas are known, the underlying mechanisms are poorly defined. In rats, restriction of protein during gest...
متن کاملDynamic expression of microRNAs during the differentiation of human embryonic stem cells into insulin-producing cells.
Human embryonic stem (hES) cells with the capacity of self-renewal and multilineage differentiation are promising sources for generation of pancreatic islet cells for cell replacement therapy in diabetes. Here we induced hES cells into insulin-producing cells (IPCs) in a stepwise process which recapitulated islet organogenesis by directing cells through the stages resembling definitive endoderm...
متن کاملThe Promoter of the pri-miR-375 Gene Directs Expression Selectively to the Endocrine Pancreas
microRNAs (miRNAs) are known to play an essential role in controlling a broad range of biological processes including animal development. Accordingly, many miRNAs are expressed preferentially in one or a small number of cell types. Yet the mechanisms responsible for this selectivity are not well understood. The aim of this study was to elucidate the molecular basis of cell-specific expression o...
متن کاملA Presenilin/Notch1 pathway regulated by miR-375, miR-30a, and miR-34a mediates glucotoxicity induced-pancreatic beta cell apoptosis
The presenilin-mediated Notch1 cleavage pathway plays a critical role in controlling pancreatic beta cell fate and survival. The aim of the present study was to investigate the role of Notch1 activation in glucotoxicity-induced beta cell impairment and the contributions of miR-375, miR-30a, and miR-34a to this pathway. We found that the protein levels of presenilins (PSEN1 and PSEN2), and NOTCH...
متن کاملQuantitative differential expression analysis reveals miR-7 as major islet microRNA.
MicroRNAs (miRNAs) are non-coding gene products that regulate gene expression through specific binding to target mRNAs. Cell-specific patterns of miRNAs are associated with the acquisition and maintenance of a given phenotype, such as endocrine pancreas (islets). We hypothesized that a subset of miRNAs could be differentially expressed in the islets. Using miRNA microarray technology and quanti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Biology
دوره 5 شماره
صفحات -
تاریخ انتشار 2007